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Abstract

We describe the implementation and performance of a three dimen-

sional particle simulation distributed between a Thinking Machines

CM-2 and a Cray Research Y-MP. These are connected by a combina-

tion of two high-speed networks; a High Performance Parallel Interface

(HIPPI) attached to the CM-2, and an optical network (UltraNet).

This is the first application to use this configuration at NASA Ames.

We describe our experience implementing and using the application

and report the results of several timing measurements. We show that

the distribution of applications across disparate supercomputing plat-

forms is feasible and has reasonable performance. In addition, several

practical aspects of the computing environment are discussed.

*Supported by a DARPA/NASA Research Assistantship in Parallel Processing admin-
istered by the Institute for Advanced Computer Studies, University of Maryland
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1 Introduction

Current supercomputer speeds and memory capacities limit the size of ap-

plications that can be run on them. Heterogeneous Distributed Supercom-

puting (HDS) promises to alleviate this shortfall by combining the resources

of disparate supercomputing platforms through high-speed networks. This

natural extension of supercomputers has only recently become feasible due

to advances in network technology. The Numerical Aerodynamic Simulation

(NAS) facility at NASA Ames includes several supercomputing platforms

connected by high-speed networks. Thus we were motivated to try a series

of experiments using HDS.

In addition to increasing the amount of processor and memory resources

available to an application, HDS provides several other advantages over

stand-alone supercomputers. Most importantly, it allows an efficient dis-

tributed implementation of an application comprised of several heterogeneous

components, each with different computing requirements. An example is a

simulation of coupled systems in an entire aerospace vehicle. HDS allows

each part of a distributed application to be run on an architecture for which

it is best suited. For example, certain codes vectorize well while others are

more appropriate for a Multiple Instruction Stream Multiple Data Stream

(MIMD) parallel supercomputer such as the Intel IPSC/860. An HDS system

also provides parallelism by running different components simultaneously on

separate platforms.

Despite its potential, HDS also has a number of possible pitfalls. In

particular, the networks must be capable of adequate transfer rates in order

to sustain high computing speeds on the supercomputers. It is wasteful of

processor time to be waiting for network I/O. In addition, the data format of

one machine is not likely to be identical to that of another. Thus, the amount

of time spent transforming or translating data must be measured. For HDS

to be viable, this should not be a significant fraction, since it figures into the

overall effective bandwidth. If transfers between two machines must cross

several networks, then there might be potential mismatches such as packet

size and transfer rate differences that could affect the overall transfer rate.

There should exist high level programming abstractions that facilitate use of

HDS. Finally, HDS applications should be able to run effectively given other

user loads on the system.

We have implemented a three dimensional particle simulation application
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onan HDSsystemcomprisedof a 32K processorThinking Machines(TMC)
CM-2 and a Cray ResearchY-MP connectedby a combination of a High
PerformanceParallel Interface (HIPPI) and a high-speedoptical network
(UltraNet), as well asa direct Ethernet link. We chosethis application for
our initial experimentsbecauseone part of its original implementationon
the CM-2 couldbe run moreefficientlyon the Y-MP. Our main result is that
HDS is feasiblefor this applicationalthough thereareseveralareasin which
improvementscan be made. Section2 describessomerelated work at the
Pittsburgh SupercomputingCenter (PSC). Section3 describesthe particle
simulation application and its implementationand use. Experimentsand
results are describedin Section4. Finally, Section5 containsconclusions
and suggestionsfor future research.

2 Previous Work at the Pittsburgh Super-

computing Center

Schneider [Schneider91] describes a distributed chemical engineering applica-

tion at PSC by professor George McCrae and graduate student Robert Clay

of Carnegie-MeUon University. Their hardware platform is almost identical

to the one we use, namely, a 32K processor Thinking Machines CM-2 and a

Cray Research Y-MP connected by both high-speed and Ethernet networks.

However, their high-speed network connection is a direct HIPPI link, while

our system is connected by a combination of HIPPI and UltraNet.

Their system also shares several features with our particle simulation.

Both implementations use two network connections. The high-speed HIPPI

(-UltraNet) link is used for large data transfers, while the slower Ethernet

link is used to transfer control information. In addition, both applications are

task serial. The algorithms involve some initial computation on the CM-2,

followed by a transfer of data to the Y-MP. The latter then performs its

part of the computation while the CM-2 waits to receive data so that it

may complete the computation. A task serial application does not benefit

from the parallelism to be gained by running code on two supercomputers

simultaneously. However, it highlights the effect of network bandwidth, since

it is not possible to hide the network latency by techniques such as pipelining.

The PSC group encountered a number of the pitfalls mentioned earlier.
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They found that the CM I/0 bus limits the attainable network bandwidth
sinceit is slowerthan HIPPI. However,their setuponly includesonesuchbus.
The NAS systemhastwo busses,andthus, twice the availablebandwidth. In
addition, a significant fraction of time wasusedto convertdata betweenthe
CM-2's parallel format, and the Y-MP's serial format. Despite theseprob-
lems,their distributed application gainsa speedupof ten overelapsedtimes
attainable on either supercomputerindividually. Thus their experiencesin-
dicate that HDS is potentially viable for our particle simulation application
as well.

3 Three Dimensional Particle Simulation

3.1 Original CM-2 Implementation

Direct particle simulation methods are important techniques for analyzing

hypersonic flows. Our implementation is a port of a three dimensional par-

ticle simulation developed in C/Paris for the CM-2 by Dagum [Dagum91].

Each particle is mapped to a single virtual processor. Since the number of

virtual processors represented by each physical processor is the same, this

mapping provides a good load balance. Each time step of the simulation

involves the following steps. Details may be found in [Dagum91].

1. Collisionless motion of particles.

2. Enforcement of boundary conditions.

3. Sorting of particles into cells.

4. Pairing of collision partners.

5. Collision of selected collision partners.

6. Sampling for macroscopic flow quantities.

The original implementation for the CM-2 is highly optimized for data

parallel operation, and communication is minimized as much as possible.

Despite this, the most expensive step is the sorting of particles into cells.

It consumes 380£ of the computational time for a problem of size 32 million

particles. Thus we were motivated to move the sorting step to the Y-MP,

where a fast sequential bucket sort could be employed.
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3.2 Distributed Implementation

The distributed particle simulation involves additional code for sorting the

particles on the Y-MP, and for network communication. The distribution of

work is shown in Figure 1. New steps are italicized.

CM-2 Y-MP

Move particles

Enforce boundary conditions

Send cell index keys

Receive particle ranks

Pair collision partners

Collision of partners

Sampling

Receive cell index keys

Sort keys

Send particle ranks

Figure 1: Distributed Particle Simulation Outline

We used the system architecture shown in Figure 2 to distribute the

application. The CM-2 is connected to the CM-HIPPI through its I/O busses.

The HIPPI connection connects the CM-HIPPI to the UltraNet Hub which

then connects to the Y-MP over UltraNet. There is also a direct Ethernet

link between the CM-2 front end and the Y-MP. The peak bandwidths of

the networks are given in Figure 2. The unlabeled network connection is the

bus used by the front end to broadcast instructions to the CM-2 processors.

It does not affect the transfer rate between the CM-2 and the Y-MP.

We removed the sorting step from the original CM-2 implementation and

coded the new steps in C on the Y-MP and C/Paris on the CM-2. Although

the FORTRAN compilers available on the Y-MP generally produce more

highly optimized code than the C compilers, C is the only language on both
the Y-MP and CM-2 that allows calls to the UNIX socket library used for

network communications. Furthermore it was convenient to use C/Paris since

the CM-2 code was already written in this language. Specifically, the new
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CM-2 CM-HIPPI

, .CM I/O Busses

50 MB/s

HIPPI

Connection

I00 MB/s

CM-2 IFront End _.

Ethernet_

1.25MB/s___

Y-MP

I I UltraNet
Hub

raNet

MB/s

Figure 2: System Architecture
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.

code includes a bucket sort procedure on the Y-MP and the familiar set of

calls to the socket library.

As mentioned earlier, we use two sockets. One uses the HIPPI-UltraNet

connection for high volume data transfers. The other uses Ethernet to trans-

fer control information. In both cases, the Y-MP is the server and the CM-2

is the client. The control data is interactive input read and then sent from

the front end of the CM-2. For example, this information is used to instruct

the Y-MP code to perform a number of timesteps or to double the number

of particles.

It is necessary to transpose the data from CM-2 parallel format to a serial

format readable by the Y-MP. Calls to the CM-2 transpose procedure are

required before sending data to and after receiving data from the Y-MP. In

addition, the Y-MP's byte ordering is reversed from the serial order required

by the CM-2. Thus, data are transmitted in the CM-2 serial order and

(un)packed appropriately by the Y-MP. The detailed outline is shown in

Figure 3 with new steps italicized. Note that only one set of socket calls is

shown.

3.3 Running the Application

Running the application requires two windows, one for the CM-2 code and

one for the Y-MP code. Since the Y-MP is server, its code must be started

first. If the Y°MP is heavily loaded, the job often gets swapped out, causing

socket requests from the CM-2 to timeout. It is dii_cult to synchronize on

two sockets. For jobs bigger than four million particles, the Network Queuing

System (NQS) is necessary to access the required memory and processor

resources on the Y-MP. However, the job must still be run interactively.

Thus a third window is used to run "top" on the Y-MP to see when the

Y-MP job has started. It is only then that the CM-2 job can begin. This

is somewhat clumsy. The application could be implemented to better fit

the NAS environment. However, if this sort of job is to be run with any

frequency in the future, the computing environment should be modified to

give additional consideration to HDS applications.



CM-2 Y-MP

Initial Code

socket

bind

listen

accept

CMFS_socket

CMFS_connect

Timestep Code

Move particles "

Enforce boundary conditions

Transpose cell index keys

Send cell index keys

Receive particle ranks

Transpose particle ranks

Pair collision partners

Collision of partners

Sampling

Receive cell index keys

Unpack cell index keys

Sort keys

Pack particle ranks

Send particle ranks

Figure 3: Detailed Distributed Particle Simulation Outline
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3.4 Initial Problems

As our application is the first to use the HIPPI-UltraNet link between the

CM-2 and the Y-MP, we uncovered several problems. At first, we could not

connect to the CM-2 socket server daemon. This was a result of several

hardware problems including a faulty CM I/O processor board and broken

I/O bus wires. After replacing these faulty parts, we still could not make

our network connection due to a faulty configuration file. This file is now

fixed and we can complete our connection. However, the network still hangs

periodically. In addition, we have been unable to run our application from

all four sequencers. The TMC engineers believe this might be due to I/O

bus problems. They are looking into these problems with the help of Ultra

engineers.

4 Experiments

We ran several problem sizes ranging from 65,536 to 2,097,152 particles,

doubling the number of particles from one run to the next. Each problem

size was run twice; once from one and once from two sequencers on the

CM-2. Each sequencer is attached to 8,192 physical processors. Doubling

the number of sequencers allows the use of two I/O busses instead of just one.

This allows a larger network bandwidth to be attained. Each run consisted of

ten time steps. For a given problem size, each CM-2 virtual processor sends

a four-byte cell index to the Y-MP every time step and receives a four-byte

rank. Thus each time step is comprised of two transfers, each of size (in

bytes) equal to the number of particles multiplied by four. All the graphs

have time measured in seconds on the y axis and problem size measured in

MParticles on the x axis. One MParticle is equal to 1,048,576 particles.

Figure 4 shows total times for the single sequencer runs of both the dis-

tributed and stand-alone CM-2 implementations. The times for the stand-

alone CM-2 runs vary linearly with problem size. The distributed run times

are approximately constant for small problem sizes, and then vary linearly

for problem sizes larger than 0.5 MParticles. At small problem sizes, the

distributed version must overcome a large network overhead to transfer a

relatively small mount of data. This overhead dominates the transfer time

and causes the execution time to be constant. Despite the fact that the dis-
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tributed codetakeslongerthan the coderunning on the CM-2 alone,it is well
within a factor of two for problem sizeslarger than half a million particles.

22O
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140

Total Execution 120

Time (s) 1o0

80

60

40

20

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Problem Size (MParticles)

o Distributed

o CM-2 Alone

Figure 4: Total Execution Time, One Sequencer

The effect of doubling the sequencers, and hence the number of I/O busses

is reflected in the total times shown in Figure 5. As in Figure 4, there is a

large overhead at small problem sizes for the distributed code. This is not

surprising since the small transfer sizes are unlikely to be affected by the

increase in bandwidth due to the additional I/O bus. Comparing Figures 4

and 5, there is a greater disparity between the two implementations for the

double sequencer runs than for the single sequencer runs. This is due to the

fact that the CM-2 stand-alone performance is doubled by the addition of

another sequencer, while the distributed code only has performance boosted

in the CM-2 and network transfer components. In fact, only the largest

problem size seems to have improved performance over the single sequencer

version. For a given problem size, Y-MP performance is unaffected by the

addition of another sequencer because the amount of data is the same as in

the single sequencer case.

Given Figures 4 and 5, it is not possible to say whether the distributed

implementation will ever surpass the performance of the stand-alone imple-

mentation. Further experimentation with larger problem sizes is needed.

The effective sorting times for the single sequencer runs are compared

in Figure 6. For the distributed implementation, these times consist of the
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Figure 5: Total Execution Time, Two Sequencers

sorting times on the CM-2 and the Y-MP, as well as the data conversion and

network transfer time. Since the sorting time on the CM-2 also includes the

time to permute the particle data, this permute time must be subtracted from

both the distributed and stand-alone CM-2 times to compute the effective

sorting time. The stand-alone CM-2 times vary linearly with problem size.

This is expected for the sorting algorithm employed [Dagumgl].

It is interesting that for small problem sizes, the effective sorting time of

the distributed implementation actually drops as the problem size increases.
The bucket sort used on the Y-MP in the distributed code is a linear time

algorithm, and is faster than the stand-alone CM-2 sort. However, the total of

the Y-MP sorting time and network transfer time is approximately constant

for small problem sizes despite the growing sort and permute times. This

is due to the apparent drop in network transfer time with problem size, as

shown in Figure 9.

It appears that for larger problem sizes, the distributed curve is parallel

to the stand-alone CM-2 curve. This indicates that distributed sorting will

never be as fast as the stand-alone CM-2 version. However, additional runs

with larger problem sizes are required to confirm this.

Sorting times for the double sequencer runs are shown in Figure 7. The

overall features of this graph are similar to that of the previous graph. Al-

though the stand-alone CM-2 times are reduced by a factor of two over the
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Figure 6: Effective Sorting Time, One Sequencer

single sequencer times, the distributed times do not appear to change much

from the single sequencer times. There are two reasons for this. First, the

Y-MP time does not change since the same quantity of data is worked on

regardless of the number of sequencers used. The Y-MP bucket sort is still
faster than the stand-alone CM-2 sort. Second, for problem sizes smaller

than two million particles, the network transfer time is not affected by the

addition of a sequencer and hence, an I/O bus.

As Figure 8 shows, the data conversion time for the distributed code is

not affected much by the number of sequencers. It only begins to be linear

for problem sizes larger than half a million particles. A detailed inspection of
the individual Y-MP times shows that they vary linearly with problem size,

and are independent of the number of sequencers. Thus, any nonlinearity is

due to the CM-2 transpose operation. The fact that the single and double

sequencer times are so close for small problem sizes implies that there is a

large overhead on the CM-2 side.
Data conversion is a significant overhead factor. Comparing Figures 8,

4 and 5, data conversion takes between a quarter and a third of the total

time for large enough problem sizes. For smaller problem sizes, the network

overhead dominates the data conversion time. We expect that data conver-

sion overhead will be reduced in the future. We have developed an optimized

version of the code in which the Y-MP data conversion is vectorized. A1-
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Figure 7: Effective Sorting Time, Two Sequencers
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though we have not had a chance to test it extensively, preliminary runs

show speedups of 80 in the Y-MP data conversion times. In addition, TMC

has announced that the new version of their operating system contains an

optimized transpose procedure with twice the speed of the current version.

As shown in Figure 9, the network transfer times for both single and dou-

ble sequencer runs show a decreasing trend with larger problem sizes. This

is very counter-intuitive, given that the amount of data transferred grows

linearly with problem size. One possible explanation is that computation

is overlapped with I/O by the optimizer. Since our timers are measuring

processor time, any overlapped I/O time is hidden. As the problem size gets

bigger, the amount of I/O that can be overlapped with processor time goes

up.

Network Transfer
Time (s)

80

7O

6O

5O

40

3O

2O

tO I I I I I I I i I I

0 0.2 0.4 0.6 0.8 l 1.2 1.4 1.6 1.8 2

Problem Size (lVlParticles)

o One Sequencer

o Two Sequencers

Figure 9: Network Transfer Time

It is curious that the times for runs with two sequencers are longer than

those with one. However, this may also be due to the amount of overlap of

I/O and processor time. With two sequencers, each sequencer is performing

half as much I/O as in the one sequencer case for a given problem size. Thus

the one sequencer case has more I/O that it can overlap with processor time.

Further experimentation is required to find out if these conjectures are true.

Note that at the largest problem size for one sequencer, a total of 160 MBytes

are transferred in about 16 seconds, yielding an effective transfer rate of 10

MBytes/s, a very reasonable bandwidth.
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We havenoticed similar transfer rate behavior using the DataVault in-
steadof the CM-HIPPI. The DataVanlt is the disk systemconnectedto the
CM-2 through the I/O busses.Weran experimentson one sequencerwhich
usedidenticaltransfersto thosein the particle simulation. For smallproblem
sizes,the time droppedas problemsizewasincreased.For larger problem
sizes,transfer time increasedwith problemsize.Although this is not exactly
the samebehaviorobservedin the network transfers(Figure 9), both cases
havedifferent transfer time variation for small and largeproblemsizes,with
a transition at a ratio of virtual to physical processorsequal to 64. This
implies that different techniquesareusedby the CM-2 I/O systemfor small
and largetransfersrespectively.

Weran anothersetof testsin which512bytesweretransferredfrom each
virtual processorto the DataVault. Increasingthe number of sequencers
causedan increasein transfer time, asin the networktransfer measurements
of Figure 9. However,the DataVault may only be accessedby a singleI/O
bus regardlessof the number of sequencersused. Increasingthe number
of sequencersalso raises the number of processors. Thus, there is more
contention for the singlebusand the transfer rate drops. This implies that
doubling the number of sequencersin the particle simulation may not have
allowedaccessto two_I/O busses as expected.

5 Summary and Future Research

We have written the first application at NASA Ames to distribute a compu-

tation between a CM-2 and a Y-MP over HIPPI and UltraNet. The results

of the particle simulation tests are quite encouraging. Although we were not

able to achieve the speed of the original stand-alone CM-2 implementation,

the distributed computation was within a factor of two to four for problem

sizes larger than half a million particles. In addition, the results enabled us
to understand the effects of various overheads. Network overheads dominate

for small problems, as expected. It seems that a distributed implementa-

tion requires large transfer sizes to be feasible. Data conversion is expensive,

comprising up to one third of the total time. As described earlier, we expect

to reduce this overhead in future versions.

Our particle simulation did not match the performance improvement at-

tained by the PSC application. However, they were able to run large prob-
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lemscomprisedof 64million elements. Thus the overheads incurred by dis-

tributing the application were not a significant factor. We were unable to

run problems larger than about 2 million particles due to several problems

discussed in Section 3. Ideally, we would like to scale our problem to the max-

imum memory capacity of the CM-2 and Y-MP. For the systems at NAS,

this should permit simulations of up to about 30 million particles. Problems

of this size should have greatly improved performance over the simulations

we have been able to run to date.

Running large problems will not be possible until all four CM-2 se-

quencers, and hence, all 32K processors, can be used with the HIPPI link.

Since our application is interactive, it is appropriate to run the Y-MP code

out of the interactive NQS queue, instead of the batch queues. In addition,

it is difficult to synchronize the sockets using the batch queues. However,

this limits us to problems of size equal to about 4 million particles. It might

be useful for future NQS versions to include a second interactive queue with

larger processor time and memory allocation in addition to the current in-

teractive queue. Finally, the intermittent hanging of the network must be

repaired before we can run our application more dependably.

Our main goal for future research is to use our optimized code to run

larger problems. In addition, we plan to improve the application's ease of

use by employing a daemon-based system for the sockets. Finally, we plan

to experiment with other hardware platforms, and other applications. For

example, some large heterogeneous applications might require more than two

hardware platforms in order to run effectively. This research will result in

the development of high performance HDS systems which greatly extend the

capabilities of current supercomputing platforms.
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